Negative Camber and Stiff Springs
Stiff Springs
Stiff springs may be a necessity in some cases, but that doesn’t make them necessarily better for everyone. Cars used in motorsport tend to have higher spring rates than road cars due to several reasons: they’re lower to the ground and thus must restrict body movement; aerodynamics are optimised for a specific ride height which stiffer springs will help maintain; and professional circuits are usually relatively flat and smooth, allowing for stiff springs to manage small imperfections.That said, softer springs will allow for more grip. Lower rates mean the springs have more travel, and that a larger force will be pressing the tyre down when more travel is necessary. Simply put, softer springs allow for more mechanical grip. The real world is always a compromise: using stiffer springs helps to reduce body roll and allows for lowering the vehicle, but comes at the expense of grip in unstable situations (bumps, imperfections, potholes, etc.).
Negative Camber
This is probably one of my favourites, because even after people are presented with facts they’ll deny it for eternity. Maybe they’re anti-vaccers too. I’m getting off topic again; let’s look at some data. The figure below is from Carroll Smith’s book Tune To Win. The coefficient of friction between the tyre and the ground is perhaps a tyre’s most important characteristic - the higher the coefficient of friction, the more grip the tyre has. As you can see in the graph above, peak grip results from about -1.0 to -2.0 degrees of negative camber. It’s worth noting that this number will change based on the specific tyre and the lateral load it’s experiencing, for example cars running very high downforce may be able to get away with slightly more negative camber.The highest negative camber I’ve heard of being used in motorsport is in Nascar. According to the competition director, cars can run as high as nine degrees for the outside front (they will race set at about -4.0 degrees, and lean in about 5 degrees), while keeping the rear camber at -3.6 degrees or less (inside tyres run positive camber). You have to keep in mind these cars are running on steep banked ovals with high downforce at incredibly high speeds, so the g-forces are greater than you’ll see on road cars, enabling use of higher camber angles.
Outside of motorsport, other examples include GM recommending -1.5/-1.0 degrees (front/rear) for track preparation of the Camaro Z/28, or the Nissan GT-R running approximately -1.0 degrees. The point is, if you can easily, visibly spot negative camber on a tyre, chances are it’s a bit excessive. Aside from a reduced contact patch and thus less grip (both laterally and longitudinally), heavy negative camber will also result in uneven tyre wear and uneven heating of the tyre on a track...
No comments for " Negative Camber and Stiff Springs"
Post a Comment